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RELAXATION-TYPE EQUATIONS FOR VISCOE~STI~ CURIA 

WITH FINITE REFORMATIONS* 

V.I. KONDAUROV 

The representation of the total deformations in the form of a composition 
of elastic and irreversible components is considered to describe finite 
deformations Of viscoelastic materials of relaxation type. According to 

the method of internal parameters, it is assumed that the thermodynamic 
potential, the stress tensor, the entropy density, the thermal flux, and 
the rate of change of inelastic deformations are functions of the total 
deformation, the temperture, the temperature gradient, and the irreversible 
deformation. On the basic of requirements for invariance of the governing 
equations, a definition of isotropic ideal and hardened viscoelastic bodies 
is given. Necessary and sufficient conditions are formulated which the 
equations of state of such media should satisfy. The propagation of 
isothermal waves of weak discontinuity in an ideal viscoelastic medium with 
small elastic and finite total deformations is considered as an illustration. 

The governing relationships of relaxation-type considered below occupy an intermediate 
location between the equations of media with infinitesimal memory and equations of state with 
weakly damped memory of general form in the degree of generality /l,/. The simplest equation 
of this kind is the one-dimensional Maxwell equation. Its distinctive generalizations, a survey 
of which can be found in /2--4/,reduce in purely mechanical theory mainly to the consideration 
of the spatial state of stress and strain and the i ntroduction of time derivatives of the 
stress and strain tensors of order higher than the first. For finite deformations the problem 
arises of selecting the preferable form of the objective derivatives. 

An approach based on introducins > generalized 1*1axw&ll's equations fcr not cnly the stresses 
but also for the other rheological relationships of a thermodynamic nature has not been applied 
extensively in the thermcmechariics cf viscoelastic media cf relaxation type. The method of 
latent, OY internal, parameters '5; has turned out to be more general and fruitful. In 
conformity with this method, t;?e running state of a material particle is described not cnly by 
the deformations, temperature, and temperat-re gradient but also by the internal parameters. 
A system of additicnal rheolcgical relationships are introd*Jced for the latter. As a rule, 
these relationships are crdinary differentra! eq-ations :iith initial data. Intesraticn of the 
equations for the internal parameters fcr given prehistcries of -,he deformaricn, temperature, 
and temperature gradient show that ail the rheclogical characteristics are f-nctionals of the 
Ceformaticn process, but functic:;a Is cf a particuiar kind gc,\Terr.ed by t!le sclution of the 
above-mentioned proble:l wit?, the initial data. 

A set cf ij ter,scrs cf the inelastic cc:.ponents cE the ;rad;ent of a n,o::-3egenerate nappi:.<; 
of tiie reference config.uraticn of the bode into a real configuration is taken in this paper as 
the internal parameters c,f the state of &s medium. Suet an approach, in which the gradient 

of the mapping is represented as the product cf the instantaneous elastic and ?: inelastic 

components is a generalizaticn of t1he expa::sicn tnat is utilized extensively tc describe 
kinematically elastic-plastic media wit:. finite deformations /G-S/. It enables one tsc ta:ie 
into acco'unt phenomena that are characterized, in the linear case, by the spectrum Cf :; 
relaxation times. 

F-drtherKcrt , .Kitho;t relyin,; on ass3r:ptions cf a particular nar_ure Csscf. as the assIYEZi3!: 

that the defcrmations are small), the cm straints imposed on the governing relations by tne 
inequality cf the entrcpy and invariance requirements are studied. In addition tc the well- 
known invariance req'Jiremer.ts of the governing equ3tiOrE fGr +-he replacement cf the reference 
syster; (the objectivit)- Trincipie: and the orthogonal transfomations by an ucdistorted reference 

conf2guration :c.aterltl isotropy' 'l!, invar;ance relative tt orthoqonal transformations of 
Euclidean spaces tangen- Xc spaces of instantaneously unloaded 

_ interneclate configurations 

at this point of tlit bojy is used in a substantial manner. The latter is ncne other ti-,ar! Z?..C 

assumption /8j that the motion as 5 rijij whole has nc influence on the rheoiogical chara-ter- 
istics of a horlc,-~~eo;lsl.y jeformed and unloaded bo&>-. 



a unique answer totbe question as to what is the specific form of the functions in the equations, 

but substantially narrow down the class of allowable equations of state. This is particularly 

so when there are additional constraints, as is illustrated in the example of an isothermal 

ideal viscoelastic medium with small elastic but finite total deformations. 
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1. Kinematics. Let X be the radius-vector of a material particle of a body in a 
reference configuration (RC) X, x in a real configuration (AC) X, corresponding to the running 

time t, such that 

x=x(X,t), dx=F(X,t)dX, A=detF#O 9.1) 
The tensor F is the gradient of the non-degenerate mapping (1.11, and the vector v= 

&(X, t)/at defines the velocity of the material particle. 
If the mapping (1.1) is twice continuously differentiable, then a local conservation law 

holds for the compatibility of the velocity and total deformation fields which is written in 
the variables X, t in the form (I is the unit tensor) 

F' - Div (v @ I) = 0 (1.2) 

In addition to the RC and AC of the body we introduce N intermediate configurations (IC) 

%,,a = 1,2, . . ., N,jV>, f. The particle radius-vector X in these configurations equals 

Xa=Xa(X+l,t), XB=X,a=1,2,...,il: 
% 

We considerthemapping x,-r-+x, as one-to-one and sufficiently smooth. We denote the 
gradients of the mapping x+,+xa by Pa so that 

d& ==P,dX,_,, detP,+O 

and we call the gradients inelastic mappings. 

(1.3) 

Here and henceforth there is no summation over a if not specially stipulated. 
In contrast to the RC and AC, the IC of a body belongs to a non-Euclidean space in the 

general case. Consequently, the tensors of the second rank P, should be considered as the 
mapping of Euclidean spaces tangent at a given point X to three-dimensional spaces containing 
the configurations &-I and &. The tangential Euclidean space can be treated as a space in 
which the IC of a homogeneously deformed body would be found with deformations equal every- 
where to the deformations at the point X. 

If E denotes the gradient of the non-degnerate mapping xx -t-x, which we shall call the 
gradient of an elastic mapping, then it follows from (1.1) and (1.3) that 

F=EPKPN+.. .PzP1 (1.4) 
The introduction of the IC x, and the representation (1.4) of the gradient F inthe form 

of gradients of an elastic and irreversible mapping is used extensively to construct models 
of elastic-plastic bodies with finite deformations /6-8/. As in the theory of plasticity, 
the expansion (1.41 does not govern the order of the elastic and viscous deformation processes 
in time, that are simultaneously developed physically in the body. 

Since all the mappings utilized are non-singular, then by using the theorem on the polar 
decomposition of a tensor of the second rank, we can write 

F=RU, E=R,U,, P,=N,W, (1.5) 
where R,R,, H, are orthogonal and L:U,,,\V, are symmetric positive-definite tensors. 

2. Governing relationships. We will consider homogeneous thermoviscoelastic materials 
of relaxation type. It is assumed that the state of a material particle X at the time t is 
given completely if the following set of quantities is known 

?.(X, t)= {F(X, f), P, (X, t), 6(X, t). y(X,q) (2.1) 
where y is the gradient of the scalar field of the absolute temperature e>O, so that df.3 = 
ydX. We will call the family of states parametrically dependent on t a generalized process 
of particle deformation. 

The governing of rheological equations of the materials under consideration are finite, 
non-differential relationships 

A = A+(a), T = T+(h), n=q+(1.), q=q+(B) 

and the evolutionary equations 
(2.2) 

@', (P;. 3,) = 0, a = 1, 2, . . ., N (2.3) 
The quantities A, q in relationships (2.2) are the free energy density and the entropy, 

T is the Cauchy stress tensor, and q is the thermal flux vector. The tensor functions of 
second rank @, relating the rate of change of the gradients PQ to the running state of the 
Particle govern the equations for the rate of production of the inelastic deformations. 

Let R =eonst be the gradient of unimodular transformations of one RC x into another 
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RC x'. If the governing equations (2.21, (2.3) do not change form during the mapping x--f %'. 
then such two configurations are called equitable while the mapping x-+x‘ is the equitability 
transformation /I, 9/. Taking into account that on replacing the reference configuration 

F--+FK,P~-+P’K,P~-fP,, PI’ -+ P1’K, y+ KTy 
$=2,3,...,N 

we find that the equitability conditions for x and x' are the relationships 

A*(F,P,,PI,~,Y);=A+(F~;,P,,PIK,~, Krr),...,~~(P,‘K,.)=~ 
u$ (PR’, ) = 0 

(2.4) 

The gradients of the equtability transformation generate a group that we denote by gX. 
Let Q =Q(t) be an orthogonal tensor which is the gradient of the transformation of one 

AC X into another AC X' for fixed RC and IC. Under such transformations 

F-+ QF, Pa-tP,,T+QTQT, q--+Qq, 8-+&y--y 

and by virtue of the principle of objectivity /l, 9/, the following equations hold for values 
of the governing mappings (2.2), (2.3) 

A’IQF, Pa, 6, y)= A+(F,.), T+(QF, .)=QT+(F;) QT ~2.;)) 
o+(QF, .i=rl+P', .A q’(QF, .)=Qq+(F, .), 
4,(P,‘,QF,.)=O; a=1,2 ,.,., iL 

We will now consider the transformation of any intermediate configuration xa. If Z, = 
Z, (X, t)(detZ, = 1) is the gradient of the unimodular transformation x, --+%,I then for the 
remaining fixed configurations the connection between the arguments (2.1) of the governing 
relationships has the form 

F--F, Pt-Pg, Pa-Zz,P,, P,,,-+P,a,Z;‘, 6-0 
y-y; /3=1,2 ,..,, IV. fi#a,a+l 

As before for the reference, for the intermediate configurations we introduce the 
definition of equitability, in conformity withwhichtwointennediate configurations x, and x,' 

are equitable if the transformation x, I).%~' leaves unchanged the value of the thermodynamic 
potential, the Cauchy stress tensor, the entropy, end the thermal flux and the form of the 
evolutionary equations does not change, i.e., 

A* (F, P,, Zap,, P,,,Z,‘, 8, y) = A” (F, I’,, Pm Pa-,,e, y). . 1 

(PR (Pp’, F, Pfi> ZJ’,, Pai’Z,‘, 0, v) = 0, 

CD, (Z,.P, T Z,P,‘, .) = 0, a&, (Pa&“’ I P;,,Z;‘, *) = 0 

(2.6) 

The transformation gradients %, in the equitabie configurations x,',~,",... generate a 

group which we denote by gXE. 
We define an isotropic viscoelastic body of relaxation type as a material in which the 

reference configuration x0 exists with an equitability group that contains the complete 

orthogonal group o; the latter also belongs to the equitability groups of all the intermediate 
configurations. In other words, in the case of an isotropic material 

0 E &, 0 E &,. a = l,2,....N 

Since 0 E g,,- 22, u is a unimodular group, then either g,* = o or g_=u as is shown 

in /lo/. Analogously, g,,:x? = o or gKa = ii. Consequently, even in the simplest case when 
JY = 1 and there is one IC, four kinds of materials are possible, governed by the relationships 

gXO=g,,=o; gx=u,gx,=o; gz,=o, g.*,=u; gx=gXL=-=u 

We consider two viscoelastic materials of relaxation type. The first is determined by 

the condition 
gX,=gX,'O. a=l.2,..,?S7 (2.7) 

and will be called a hardening viscoelastic body. It is assumed for the second that 

g, = &.fi = 11, gYN = 0, p1 = 1. 2. ., N - 1 (2.8) 

This material will be called an ideal viscoelastic body. 
nor a hardening viscoelastic body(2.7) it is necessary and sufficient that the governing 

equations have the form 

A = .4+ (k,), T = RT- (hia) R=, II= qi (Al), q = Rq+ (h,) (2.9) 

V,’ = I, (1.X) 

and that the following isotropy properties be satisfied: 

A+(&) = A+ (J+Q), QT+ @I) Q’ = T’ (&I*), 

q+ (h,) = 1+&Q), Qq’ (J-1) = q- (?.lQ), QY, (iv,) QT = Ya (hQt 

(2.10) 



Here 
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(2.11) 

*a prove the necessity of (2.9) and (2.10) we ocnsider the invariance conditions (2.4) 
with respect to i&3 constant orthogonal transformation of an undistorted XC. Assuming the 
transformation gradient K = RT (X0, t& X, = cons& to = const, we obtain 

A =A+(F, Pp, P,,8, y)=A’fRURr, Pp' P,R=, 6 Ry),..., (2.12) 

Qll(Pz'Rr, .)=8,Q1.$(Pa'..)=O 
8 = 2, 3, . . . . x 

NOW let z,(& t)= n(X, to)HF(X, t)(t<tJ be a time-dependent gradient of the transformation 
of the Euclidean space tangent to the IC xt at the point X. This transformation is Orthogonal. 
Its time-derivative has the form 2,.(X, t) = R(X, 4) HT'(X, t). Then conditions (2.6) applied to 
(2.12) yield 

(2.53) 

Analogously sequentially examining the orthogonal transformations 

2,(x, t)= R(X, to)R:_‘_, (X, t)H&(X, t) . . . R%r(X. *) 

of the Euclidean spaces tangent to the IC %a (a= 2,3, ..* H) at the point X we arrive at the 
necessary form of the governing equations 

A = A' (LIR). T =‘I-+ (XzB], rl = q+ (X?$ q = q+ ir?? 

Qa (RV,'R', 11~) =0 

where S,fi Is given by (2.11). 
If the equations for the rates of production of the inelastic deformations allow of a 

form solved with respect to the time derivatives, then 

RV,'RT =‘F= (51~) 
Hence, tkaing the objectivity principle into atcount we obtain (2.9) and (2.10), for 

Q (i) = Rr (X,, t). 
The sufficiency of the forms (2.91, (2.10) of the governing equations for the satisfaction 

of (2.7) and the validity of the objectivity principle follows fromthe direct substitution 
into (2.9) of the formulas 

F* =QFK =(QRK)(K~UK) 
P *=z 1' ZT a a a_I = (Z,H,Z;_i) (Z,_la‘,Z;-,), 

R:=QRK, 

Zs= K 
U*= K*UK 

H,'=Z,W&, \V@xf =z,_,W,&:-l 

obtained taking the uniqueness of the polar expansion and the definition 12.11) of the tensors 
V a into account. 

in the case of ideal viseoelastic media, it is necessary and sufficient for the satisfaction 
of conditions (2.8) and the objectivity principle, that the governing relationships have the 
form 

A = A- (I.& T = RI’* (hz) R*, 1) = q’ (I,?), q = Rq’ (Iv,) (2.14) 

\‘R..V? = Y’x (hz), Y,‘Y;z = Vi’., . I , VgJF, (hz) vx . , . v,_> 
a=l,2,...,A’--1 

where A*, T+, qi, g” and Ye are isotropic functions, i.e., 

A+ &I) = A* f&Q), QT’ (h,) QT = T’(k&, (2. $5) 

tl+ &z) = q* &Q), Qq’ (L) = q+ (a&, Q’y,(hz) QT = ‘Pa &Q) 
Here 

L(X,t)= {B,&, @, B-'%), &Q= [QBQT,&e, QB-%I} (2.16) 
To prove the neces”,yt~‘o;;t’~~. ..yg, & = det Pa = det V, 

. , (2,15), the unimodular transformation of the RCx with 
theconstantgradient K= As(X,,~~)P,-l(X,,~,), the unimodular transformations of the ICX, (@= i,2, 
* . ., 3’ - 1) with the constant gradients Za = A& (Xo, t,j Pail(X,, to), the orthogonai transformation 

xx with the gradient Z,(z)= R(~~)H~~(~~)..,H~ ~_,(~~)H~T(~) and the objectivity principle should 
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be considered for Q(f)=: Rr(X,,t). The equations for the production rates of the inelastic 
deformations are here convenient to use in a form equivalent to (2.3) 

o6’ [-& (P&‘N_~ P& F. Pa, 0.y =o ] 

a, f! = 1, 2, . ., .I;. 

The sufficiency of (2.14) and (2.15) for the satisfaction of the objectivity principle 
is evident. To prove the sufficiently of (2.14) and (2.15) for the satisfaction of (2.8), 
the fact that (2.14) is a narrowing of systems analogous to (2.12) and (2.13), whose sufficiency 
is clearly seen, should be used. 

We will consider constraints on the governing relationships of viscoelastic bodies of 
relaxation type that are imposed by the second law of thermodynamics 

--p/l'-- p$I'+ tr(TF-'=F') + f3-‘qV:8>0 (2.17) 

Assuming that the functions A+,T+,q’, q+ and y, are defined and continuously differentiable 
in an open simply-connected domain of the variables {F,V,,e,y) it can be shown that 

a.-l- A=A+(U,V,,e), q=-_ (2.18) 

T=p-$.~T =@~RT 

It is seen from (2.18) that the inequality (2.17) for the materials being studied will 
result in partial splitting of the temperature gradient and strain-stress effects, theentropy 
and the free energy are independent of ve. 

-For the case of an ideal viscoelastic body, the relationships (2.18) allow of greater 
simplification. To execute them we note that the non-degenerate tensor B is non-symmetric 
in the qeneral case. Consequently, B = QS, where Q is an orthogonal, and S a symmetric 
positive-definite tensor. For them the relation 

follow from (1.4) and (1.5) and the uniqueness of the polar expansion. 
The free energy density A+ as a function of S, is independent of Q. 
To show this we consider the particle deformation process S = S, for t 1. 1, for which 

all the arguments of the state are unchanged, except Q, Then 

Q=RrR,H, S= H*UC,H, H=HNHK_l...Hr 

A’ = -$-+ Qij' = -$- S<,iQ,,'Q,,,TB,,o 
13 oh 

Since 

T=pRGB'R' 

then by virtue of the symmetry of the Cauchy stress tensor 

p.+l'=tr [(RTTR)R]= 0, R = Q'Q' 

Here and henceforth the subscript notation is used in Cartesian orthogonal coordinates 
in those relationships where tensors of the third and higher ranks appear. 

If isotropy of the function A’ is used, then the dependence on S can be represented in 

the form 

A=AI(e,&,,8), e=~(I-FF-'TV\.TF1) (2.19) 

V= V,V,...V,v, \:# VT 

from which it follows that 

T = p (I - 2e) aA,/& (2.20) 

3. Example. We will consider the important practical case of an ideal viscoelastic 
medium with small temperature gradients and small elastic deformations that build up in a 
background of large irreversible deformations and large rotations. For simpiicity, we will 

limit ourselves to the cape when N = 1. 
If the symmetric part U, of the gradient E tends to one, then E = R,U.HW'+R,H\V, where 

W =Wr, H zH, and, therefore, U-+W',R+R,H. Introducing the tensor e of small elastic 

deformations such that 

U=W;&, E=ET, ]~&//<I 

we find that the following tensors are also small 

(3.11 
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B - I= e\V-’ , B-’ - I= \v-‘e 

e =l/aR(eW-' + W-'e)R* 
(3.2) 

The expansion of the free energy density (2.19) in a Taylor series in the neighbourhood 
of e=O to second-order term accuracy, taking the isotropy A, and the relation (2.20) into 
account can be written in the form 

p*Al = p*A, (8, N - pz, (0, 4 1, f l/z h (0, 4 11’ Jr (3.3) 

P (R A) 1, 
A zs Al, I, = tre, I, = tre2 

where p* = pO/A is the density of the material in the IC x,,T, = -p*I is the Cauchy stress 

tensor in this configuration, h,~ are scalars possibly dependent on $ and A. It follows 

from 

that 

have 

(3.3) and (2.20) that 

T=-_(l--Z~)p,I+hZ~I~2(~+p,)e (3.4) 

9= -+$L+&+&Z1 

We consider the equation for the rate of production of the inelastic deformations 

W'W-'= Y{B,A,0,B-iT~5) 

For small temperature gradients it follows from the symmetry of the isotropic function 

This means that VP = Y(B, A,@) in a linear approximation in V‘8. 
By virtue of the smallness of the elastic deformations defined by (3.1) and (3.21, we 
the following functions continuously differentiable with respect to B 

where it. follows from the isotropy of second- and fourth-rank tensors 

yij ILO = \f@ (8, A) 6ij 

Taking,into account that tr(B -I) = tr(e\\'-I)== tre = I,, while IT,= 0 follows from the 
symmetry of W* we find the final form of the equation for the rate of production of the 
inelastic deformations of an ideal viscoelastic material with small elastic deformations and 
small temperature gradients 

We analogously obtain the Fourier law q = k,(O, A)YO with a scalar thermal conductivity 
possibly dependent on the temperature and the volume inelastic deformation for the heat flux 
in the approximation under consideration. 

As an illustration, we calculate the velocity of propagation of a weak discontinuity 
wave in the material under consideration. In addition, we assume that the processisisotherma 
and proceeds at the temperature O,, of the RC, and the IC x1 is an unloaded configuration with 
zero stresses,.4 El, i.e., there are no bulk inelastic deformations. Then 
0, it, p, TI* = con.%, and (3.4) and (3.5) reduce to the form 

to = 0, ?;,-I f ~,,-1 = 

From system (3.6) we obtain the following differential equation (T'= T-Y,(trT)I is the 
Cauchy stress tensor deviator): 

T'+r-'T'=htr(VvieVv)I+~r(V\.i_Vv~+eFv+V\.~e) (3.7) 

It is hence seen that when the deformation process halts at the time i= to, i.e., for 
Vv = 0, the global part of the stress tensor will remain invariant while the deviator relaxes 
according to the law 

T' (t) = T' (to) exp (-(t - to)/q 
Appending the equation of motion of (3.7) 

pv' - div T = pb (3.8) 
and taking into account that e is expressed in a linear manner in terms of T from the first 
relationship in (3.61, we obtain a closed system of equations in the variables v,T. 
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Let (r(~,f)= 0 be the equation of the weak discontinuity surface D == --jy'pl-'~q:dt,n= 1 'iq j-1 

'q the propagation velocity and unit normal to the surface. Let c= D --,n bethepropagation 
velocity of the surface relative to the particles of the medium, and \‘ = [%!bn]_+, S = ~~T:r%z_+, 

E = [aelanl-’ are jumps in the normal derivatives of the velocity vector, the Cauchy stress tensor, 
and the elastic deformations tensor. For r~0 it follows from (3.7) and (3.8) that 

a\ -b(~~6M)n-~eV=U I? $1 , 

a = pc” - p. b = I.+ p, 6 = 11 e I/ = (tr eq 
“1 = en,h, .v = V.“, Aif = \‘.“I 

In the zeroth approximation corresponding to e== 0, Eq.(3.9) takes the form o,V- b.?n- (1. 
from which a,= b and V= 3-n or .v= 0. au= 0 follow. 

The first case describes a longitudinal wave with amplitude vector of the weak discontinuity 

of the velocity collinear with n so that 

pr,? = i, - r)p, V = ,?‘n 

The second case corresponds to a transverse wave on which 

PC,,' 2 I*, \‘.n = 0 

Let 1 = eedd', 11 ( = 0 (I), L = 1.n. If the vectors n,m and I are linearly independent, then 

by convoluting (3.9) with n,m and 1 and using the Hamilton-Cayley theorem, we arrive at a 
system of three linear homogeneous equations 

From the fact that the determinant of the coefficient matrix of system (3.10) vanishes 

when O,?O, it follows in a linear approximation in 6 that a= au- 6a,= b-; 6(h~ p)(m,n) or 

=I (7. -!- 2,~) (1 1 n.en) (%liJ 

The weak discontinuity waves propagating at the velocity (3.11) can be called quasi- 

longitudinal waves since the polarization of such waves is determined by the formula 

\' <m I.,, (II 7. 6yb-‘ml 

When 0U= (I we have 0- &,I o(6"). The equation 

a,?_~(Jl--m.n)a,-~~~(Ji- J,m.n;-I.")=(, 

is obtained for a,, whose solution is 

(3.121 

In order to show the non-negativity of the radicand in the solution (3.12), we use an 

orthonormalized basis that agrees with the triplet of eigenvectors of the tensor e. Then the 

non-negativity condition reduces to the inequality 

The symmetric quadratic form under consideration will be non-negative if and only if 

all the minors of the determinants symmetric with respect to the main diagonal of the 

coefficient matrix are non-negative. We find by a direct calculation that all the seeond- 

order minors equal 4?~~~11~?11~~ -> U. and the third order minor equals zero. Therefore, the 

quadratic form is non-negative and the propagation velocities under consideration 

are real quantities. In contrast to the zeroth approximation, these velocities are not 

multiple for \;e’l+ (1. The polarization of such waves is determined by (3.10) in a ilnique 

manner, and in particular, is characterized by the fact that the vector of the weak discontinuity 

of the velocity has a normal component proprotional to 6= !'ei. This property enables us tc 

call the waves quasitransverse. 
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DYNAMIC PROBLEMS FOR A PLANE AND CYLINDRICAL VISCOELASTIC LAYER PARTIALLY 
ADHERENT TO A STIFF RING* 

S.I. GRITSENKO 

The plane problem is examined of the shear-vibration of an infinite stiff 
viscoelastic layer covering that adheres partially to an undeformable 
cover-foundation: rigidly along a strip of width 2a, and in frictionless 
contact outside this strip. In addition, an analogous axisymmetric problem 
is considered for a cylindrical viscoelastic layer. The layer is 
partially adherent to a ring along one surface: rigidly along a band of 
width 2a and without friction outside this band, and it is rigidly adherent 
to a ring vibrating in the axial direction along the other surface. 

Mixed boundary value problems reduce to the solution of an integral 
equation of the first kind which reduces, in turn, to an infinite system 
of linear algebraic equations. Certain results are presented of a numerical 
solution of the problems posed. Solutions are compared for the visco- 
elastic and corresponding elastic problems. The efficiency of two methods 
of solving the integral equation, reduction to an infinite system and 
approximation of its kernel, is compared for the latter problem. 

1. We examine the plane problem of steady vibrations of a viscoelastic layer O:<z<h, 
Iz I< co lying on an undeformable foundation z = 0. The layer is rigidly aherent to the 
foundation along the strip 1 J I< a of width 2a and makes friction-free contact outside this 
strip. Along the whole upper boundary z = h the layer is rigidly aherent to an undeformable 
covering vibrating in a tangential direction (problem A). The boundary conditions of problem 
A have the form 

u, (5, h, t) = U,e-'O', u, (z, 1~~ t) = 0 
u, (5, 0, t) = 0, I r I < CQ 
u, (I, 0, t) = 0, 1% I < a; z,, (2, 0, 1) = 0, 12 I > (1 

In addition to problem A, we consider an analogous axisymmetric problem for a viscoelastic 
cylindrical layer R,.< T< &,, Iml<= (the third cylindrical coordinate z is replaced here 
by z for uniformity in the subsequent calculations). The cylindrical layer is rigidly adherent 
to a fixed undeformable ring along a strip Iz I< a of width 2a at its inner surface r = R, 
and abuts it without friction outside the strip. Along the whole external surface r=Rh the 
cylindrical layer is rigidly adherent to an undefonnable ring vibrating in the axial direction 
(problem Bl). The boundary conditions of problem Bl have the form 

u, (R,,, x, t) = U,,e-'w', II, (R,,, 5, t) = 0 
u, (R,, 5. t) = 0, I z I < - 
u, (Ro, 5, 4 = 0, I z I < a; z, (R,, 5, t) = 0, Ix I > a 
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